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ABSTRACT Theranostics have received enormous attentions
for individualized diagnosis and treatment in the past few years.
Especially, the availability of various nanoplatforms provides great
potentials for designing of sophisticated theranostic agents includ-
ing imaging, targeting and therapeutic functions. Numerous re-
ports have been published on how to construct multifunctional
nanoparticles for the targeted diagnosis and therapy simultaneous-
ly since the concept of “theranostics”. This review presents recent
advances of molecular imaging and nanoplatform technology, and
their applications in drug discovery and development. Applications
of nanoplatform-based theranostics in cancer and cardiovascular
diseases will also be covered including diagnosis, assessment of
drug biodistribution, and visualization of drug release from nano-
particles, as well as monitoring of therapeutic effects.
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INTRODUCTION

With the growing trend towards the advancement of person-
alized medicine, theranostics used for individualized diagnosis
and treatment has received enormous attentions in recent
years (1–4). Theranostic entities simultaneously deliver imag-
ing agents and therapeutic drugs within the same dose, and
enable one to monitor pathological sites, delivery kinetics,
drug distribution and release, as well as therapeutic efficacy.
Based on these advanced capabilities, it is feasible for

physicians to choose individualized medicine and make effec-
tive decisions in real-time, such as choice of treatment type,
procedure, and quantity of a drug (5). In order to reach an
effective drug concentration at a site of interest, the multifunc-
tional entity can be endowed with a targeting moiety to
achieve site-specific therapy and imaging (6). The potential
benefits of theranostics for patients are maximization of ther-
apeutic effects with minimized adverse events in conventional
systemic administrations (7). Besides, the combined tech-
nique promotes the development of new drugs, even no
theranostic drug has been approved by U.S. Food and Drug
Administration (FDA).

The availability of various nanoplatforms provides the
opportunities for better drug carrier design with imaging
functionality (8,9). Clinically relevant nanoplatforms include
polymer-drug conjugates, polymer micelles, liposomes, and
dendrimers, etc. These nanoplatforms can conjugate or en-
trap drugs and offer a number of advantages over conven-
tional formulations in certain applications (8). Due to nano-
size, nanoplatforms can prolong the circulation time of the
drug, selectively deliver anticancer drugs to tumor tissues by
passive or active targeting, and control drug release by deliv-
ery systems responsive to a stimulus such as pH, temperature,
light, ultrasound, or enzyme degradation, leading to a desired
drug release rate and concentration at the site of action (10).
Additionally, one important advantage of nanoplatforms is
that they can integrate diagnostic and therapeutic compo-
nents with targeting moieties (11,12). Even at their early stages
of development, the field of nanoplatform-based theranostics
is growing exponentially thanks to advances in nanotechnolo-
gy and the call for personalized medicine.

With technological advances in instrument performance
and the toolbox for imaging reconstruction software, molecu-
lar imaging has become an indispensable tool in preclinical
research and clinical trials, including magnetic resonance
imaging (MRI), computed tomography (CT), optical imaging,
ultrasound (US) imaging, positron emission tomography
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(PET), and single photon emission computed tomography
(SPECT). With the help of molecular probes, these imaging
technologies improve their sensitivity and specificity, for better
evaluation of therapeutic efficacy during drug development
pathway (13–15). Incorporation of imaging probes into
theranostic agents will enhance the performance of multifunc-
tional entities. Among these options, choosing of right imaging
modality is crucial in designing and optimizing of
nanoplatform-based theranostic agents (16), depending on
specific applications. Ideally, molecular imaging technology
should enable one to study an intact living subject with excel-
lent spatial and temporal resolution for monitoring biological
processes at molecular and cellular levels, as well as with
potential for sequential, longitudinal monitoring.

In this review, we will discuss the key advances in medical
imaging and nanotechnology related to theranostics. In par-
ticular, we will focus on nanoplatform-based theranostic sys-
tems for diagnosis and treatinf of diseases, and discuss their
applications for tracing drug delivery and monitoring of ther-
apy, especially in the areas of cancer and cardiovascular
diseases.

IMAGING MODALITY

Each imaging modality aforementioned has its own advan-
tages and disadvantages in terms of sensitivity, spatial resolu-
tion, target, and penetration depth (Table 1). Ultrasound
imaging is safe and relatively low cost, but its spatial resolution
is poor comparing to CT and MRI. CT is a classical anatom-
ical imaging modality and can deal with the visualization of
organs or tissues, such as lung structures. MRI offers sensitive
detection of soft tissue pathologies and conveys valuable in-
formation related to physiological process. Nuclear imaging
(such as PET or SPECT) is a sensitive tool for diagnosing
diseases at early stage, analyzing drug biodistribution and
assessing the efficacy in living subjects, but the spatial resolu-
tion of PET is much behind ultrasound, CT and MRI.
Optical imaging technology including fluorescence and bio-
luminescence imaging are highly sensitive, but only accessible
at limited depths of a few millimeters. Combination of two or
more imaging modalities may thus improve the overall func-
tion of monitoring of diagnosis and therapy.

In clinical practice, these imaging technologies are routine-
ly implemented for early diagnosis of diseases, particularly in
oncology and cardiovascular diseases, selection of personal-
ized regimen, and monitoring of therapy efficacy. These im-
aging technologies have gradually become an important tool
in the process of drug discovery and development for improv-
ing the efficiency of drug screening in preclinical studies,
investigation of the pharmacodynamics in clinical trials
(18–20). Not only do such strategies reduce the cost and
workload, but also speed up drug development. It is useful

to apply imaging technologies in different phases of drug
development (Fig. 1), with the goal of optimizing the process
and bringing drugs to the market much faster.

Among all imaging modalities, PET and SPECT imaging
modalities have attracted great attention mainly due to its
excellent sensitivity with low background noise. In addition,
PET imaging agents, such as radioisotopes 11C, 18F and 15O,
can label drugs or targets, and keep physiochemical character-
istics of the drug unchanged if not to affect their
pharmacophore. Heavy-metal isotopes such as 64Cu, 68Ga,
99mTc and 111In are commonly used to label various mono-
clonal antibodies or peptides through chelating ligands such as
DOTA (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-
t e t r a a c e t i c a c i d ) o r T E T A ( 1 , 4 , 8 , 1 1 -
tetraazacyclotetradecane-1, 4, 8, 11-tetraacetic acid). The
bioconjugation chemistry enables one to develop new PET
or SPECT imaging probes which can be used in early drug
development for accurately measuring the biodistribution and
pharmacokinetics of new agents in clinical applications by
quantitative PET or SPECT imaging. For example, 64Cu-
labeled Abegrin™ may be used for preclinical research and
characterization of pharmacokinetics, treatment monitoring
and dose optimization (21). In another example, Niu et al.
studied the delivery and distribution of Cu-labeled antibodies
(64Cu-DOTA-cetuximab) in head and neck squamous cell
carcinoma of the mice, and evaluated tumor response after
64Cu-DOTA-cetuximab treatment using Fludeoxyglucose 18F
(FDG) PET imaging (22).

The application of molecular imaging may accelerate drug
development process, while simultaneously improve the de-
sign of imaging probe and fusion imaging with molecular and
anatomical imaging tools. FDG is the most widely used tracer
for PET imaging in oncology by determining abnormal glu-
cose metabolism in pathological sites to assist in diagnosing
early diseases for initial staging, studying of tumor cell prolif-
eration and metastasis, and assessment of response to chemo-
therapy or radiotherapy in many tumors including lympho-
ma, breast cancer, colorectal cancer and non-small-cell lung
cancer (23–25). In 2012, the FDA approved florbetapir 18F
injection (Amyvid™), as a radioactive diagnostic agent for use
with PET imaging, to evaluate beta-amyloid neuritic plaque
density in patients who suffered from Alzheimer’s Disease
(AD) or other cognitive decline (26).

However, PET or SPECT imaging for pharmacokinetic
studies has its limitations, such as short half-life of isotope
limits time window for pharmacokinetic studies, and low
spatial resolution with unsatisfactory anatomical information.
With the improvement of imaging agents and instruments,
these problems have been solved partially. 125I is a low-energy
gamma emitter, and it can image and quantify in small
animals with relatively high resolution and sensitivity.
Moreover, its half-life is around 59 days that can be used to
evaluate the pharmacokinetic characteristics and disease
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response in long-term therapy (27). What’s more, dual imag-
ing modalities such as PET/CT, SPECT/CT or PET/MRI
can compensate the disadvantages of each other and allow for
co-registration of high resolution anatomical data with highly
sensitive molecular information (28,29). Compared to PET/
CT and SPECT/CT imaging, PET/MRI provides advan-
tages in acquiring better contrast of soft tissues with excellent
sensitivity (Fig. 2) (30–32).

Among all clinical imaging techniques, MRI presents
unqiue value at every stage in drug discovery and develop-
ment process, including in early stage for drug candidate
screening, and in late stage for investigation of safety, phar-
macokinetic, pharmacodynamic, and efficacy profile of a drug
candidate (33). In addition, MRI provides an opportunity to
bridge up the gap between preclinical and clinical studies by
examining the mechanisms of drug action of candidate com-
pounds (34).

Gadolinium (Gd) or manganese (Mn) based small para-
magnetic molecules, and superparamagnetic iron oxide
(SPIO) based nanoparticles, are two major categories of
MRI contrast agent approved for clinical applications. Gd3+

and Mn2+ like heavy-metal isotopes coupled to chelating
ligands are liable to react with the active group of drugs and
targets for MRI imaging. For example, Kalber et al. synthe-
sized a Gd3+ labeled derivative of colchicine and allowed for
in vivo imaging of central necrosis response to colchicine ther-
apy in ovarian carcinoma xenografts (35). SPIO nanoparti-
cles’ surface can be modified to add a wide range of function-
alities, such as targeting, imaging and therapeutic groups

(Fig. 3). This versatility makes the contrast-enhanced MRI
imaging increasingly important in the construction of
theranostic agents with many excellent examples (36,37).
Besides,many fluorinated drugs or contrast agents, such as 5-
Fluorouracil, perfluorocarbon (PFC)-based nanoparticles, can
be used for fluorine (19F) MRI and/or MR spectroscopy
(MRS). Based on these imaging modalities, one is able to
investigate agents’ pharmacokinetics, map tumor oxygena-
tion, assess molecular expression in vascular diseases, and
visualize and/or quantify of endogenous macrophages,
injected immune cells and stem cell transplants (38–43). In
combination with anatomical 1H MRI, 19F MRI can obtain
anatomical information. With further introduction of new
pulse sequences and contrast agents, MRI will continue to
be a powerful tool in drug discovery process, early diagnosis
and assessment therapeutic efficacy in clinical applications.

NANOPLATFORM

Following the brief introduction of imaging technology and
their applications in theranostic applications, we will focus
here on nanoplatforms with the capability to serve as image-
guided targeting drug delivery vectors. These nanoplatforms
listed below are made from biocompatible polymer materials,
either soluble or colloidal aqueous, and generally vary in size
from 10 to 100 nm. The drug or imaging agent is either
encapsulated in the core of nanocomposites or attached to
the surface of nanoplatforms. Meanwhile, targeting delivery

Table 1 Comparison of Some Key Imaging Modalities (14, 17)

Modality Sensitivity (M) Spatial resolution Depth Time Target* Imaging agents

MRI 10−3 to 10−5 25–100 μm No limit Min-hr A, P, M Paramagnetic: Gd, Mn chelates
Superparamagnetic: Fe3O4, gamma-Fe2O3

CT Not well characterized 50–200 μm No limit Sec-min A, P Iodine

PET 10−11 to 10−12 1–2 mm No limit Min P, M 18F, 11C, 15O

SPECT 10−10 to 10−11 0.5–1 mm No limit Min P, M 99mTc, 111In chelates

US Not well characterized 50–500 μm mm-cm Sec-min A, P Microbubbles

Optical imaging Bioluminescence: 10−10 to 10−11

Fluorescence: 10−9 to 10−12
1–3 mm mm Sec-min P, M Bioluminescence: Luciferin Fluorescence:

a) dyes b) quantum dots

*: A, anatomical; P, physiological; M, molecular

Fig. 1 Imaging application in drug
discovery and development
process. Images adapted with
permission from ref (19)
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system based on nanoplateforms can be achieved by conjuga-
tion of targeting ligands on their surfaces for specific recogni-
tion of a site on diseased region. In this section, we present
some excellent examples in the field of biocompatible
nanoplatforms used as theranostic systems.

Drug-Conjugates and Complexes

Polymer-drug conjugation is a successful strategy in drug
delivery. Conjugation of hydrophobic low-molecular-weight
drugs to water-soluble polymers can improve their solubility
and efficacy through passive or active targeting with reduced
in vivo toxicity. While biomacromolecular drugs such as mono-
clonal antibodies or recombinant DNA can be conjugated to
water-soluble polymers mainly for reduced immunogenicity,
prolonged plasma half-life and enhanced stability (44,45).
Conjugated drugs can be triggered to release at certain envi-
ronment when the conjugation linker is responsive to extra-
cellular or intracellular biological or chemical stimuli (46,47).

It is crucial to choose water-soluble polymer carriers
that their physico-chemical properties determine
biodistribution, elimination and metabolism of the con-
jugate as a whole. The ideal polymer carrier should be
non-reactive in blood, non-toxic, non-immunogenic, and with
suitable loading capacity. Some representative polymers used
in clinical applications are polyethylene glycol (PEG), N-(2-
hydroxypropyl)methacrylamide (HPMA) copolymers and
polyglutamic acid (PGA). PEG is a particularly attractive
polymer for drug conjugation, and approved by the FDA as
a drug excipient in pharmaceuticals, including topical, inject-
able, nasal and rectal formulations. For example, therapeutic
protein PEGylation has led to the development of numerous
drugs, many of them have been approved and entered the
market, such as PEG-asparaginase (Oncaspar®), PEG-α-

Fig. 2 Top PET, MR, and CT single-modality imaging with a 64Cu labelled
monoclonal antibody. Compared to the CT image, the PET image depicts
more intuitive antibody clearance through the kidneys and the uptake in the
tumour. Meanwhile, the MR image shows more excellent soft tissue contrast,
and a clearer delineation between the tumour tissue and the connective tissue.
BottomPET/MR, PET/CT, and PET/MR/CT images show the advantage of PET/
MR over PET/CT. Images adapted with permission from ref (32)

Fig. 3 Iron oxide nanoparticles
coated with (a) a triblock copolymer
and (b) dopamine-plus-human
serum albumin to confer water
solubility and functional extendibility.
Images adapted with permission
from refs (37)
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interferon 2a (Peg-asys), PEG-α-interferon 2b (Peg-Intron)
and PEG-granulocyte colony-s t imulat ing factor
(Neulasta™), etc. (48,49). However, the linear PEG can only
carry one or two drug molecules via coupling to the end
chains, resulting in low loading capability for delivery of
small-molecular-weight drugs (50). In an effort to overcome
the limitation, branched PEG and hyperbranched polymers
are also being explored (44,51). In one case, Pasut group
synthesized branched PEG that based on amino adipic acid
or beta-glutamic acid, as branching molecules, and the large
polycyclic drug epirubicin molecule was chosen to bind to
polymeric carriers with high drug carrying capacity (52). Due
to the hydrophobic nature of the drug and high drug loading
capacity, the PEG-epirubicin conjugates tend to form micelle
like aggregates, and exhibit long blood residence time which is
favorable for therapeutic application. In addition, PGA can
theoretically carry one drug molecule per monomer unit and
display a higher loading capacity that reaches 37 wt.% PGA-
Paclitaxel (53).

Importantly, polymer-drug conjugates in combination with
molecular imaging technology have been widely used to in-
vestigate the mechanism of drug delivery with polymers, and
monitor pharmacokinetics, biodistribution and drug targeting
efficiency (54,55). Lammers et al. synthesized gadolinium-
labeled HPMA copolymer incorporating doxorubicin and
gemcitabine to analyze the biodistribution of nanotheranostics
using MRI (56). The successful preclinical application of
polymer-drug conjugations containing imaging modality
bodes well for future design of optimized formulations.

Polymeric Micelles

Polymeric micelles, which consist of amphiphilic block copol-
ymers that self-assemble to form core-shell architecture in
water ranging from 10 to 100 nm in size. Wherein, the
hydrophobic core can load water-insoluble drugs and imaging
agents by physical entrapment, while the hydrophilic surface
layer stabilize the micellar structure in aqueous environment,
and protect nanoparticles from rapid renal exclusion and
uptake by reticulo-endothelial system (RES), also, covalently
bind hydrophilic imaging agents (57). Polymer micelles have
been successfully used as pharmaceutical carriers for water-
insoluble drugs, usually, choosing PEG as the hydrophilic
shell-forming block. An example of polymeric micelles under
clinical evaluation is NK105, a PEG-polyaspartic acid micelle
loaded with paclitaxel, now is evaluated for breast cancer
therapy in clinical phase III in Japan (www.clinicaltrials.
gov/). Another polymeric micelle (PEG-PLA) entrapped pac-
litaxel (Genexol-PM) has been approved for clinical use for
breast cancer in Korea in 2007 (Samyang Genex Co.), Phase
II for pancreatic cancer, bladder cancer, and other cancers in
the US (www.clinicaltrials.gov/). The study in phase I
determined that the maximum tolerated dosage (MTD) of

Genexol-PM was 390 mg/m2 and 300 mg/m2 as the recom-
mended dose (58). The study in phase II displayed that
Genexol-PM was effective and safe with high response rates
(58.5%) in patients suffering from metastatic breast cancer,
but caused hypersensitivity reactions in 19.5% patients in the
absence of premedications (59).

Choosing biodegradable polymers as hydrophobic seg-
ment can control the release of drug payload in the core
through diffusion, polymer degradation ormicelle dissociation
mechanisms (60,61). Besides, researchers explored different
types of micelles to control drug release at target site, espe-
cially, environmentally-sensitive polymeric micellar systems
(62,63). Chemical fixation of micelles by crosslinking of either
the core or corona using stimuli-responsiveness ligands are
developed to prepare long-circulating and sustained-release
micelles (64–66). Cheng et al. reported an adaptable drug
carrier made of disulfide bonded mPEG-(Cys)4-PDLLA mi-
celles (67). These micelles can stably retain doxorubicin in the
blood stream and efficiently deliver the drug to the tumor with
a 7-fold increase of the drug amount, comparing to non-
crosslinked mPEG-PDLLA micelles.

Polymer micelles are thoroughly tested as imaging probes
or theranostic carriers. Self-assembly of amphiphilic block
copolymers can entrap the hydrophobic SPIO or Mn-SPIO
nanoparticles to form clusters using for MR imaging
(37,68–70). In one approach, we have designed an amphiphil-
ic starlike polysaccharide with multi-arms of dextran linked to
a β-cyclodextrin (β-CD) core through click chemistry, and it
was used for encapsulation of multiple hydrophobic SPIO
nanoparticles and small molecule anticancer drug doxorubi-
cin to form a multifunctional probe (70). The probe has a T2
relaxivity of 436.8 Fe mM−1 s−1 and is internalized into the
cytoplasm of multidrug-resistant breast cancer cell line (MCF-
7/Adr) after 24 h labeling. One should notice that the aggre-
gation degree of nanoparticle are related to different values of
T2 relaxivity, higher aggregation degree usually leads to a
better signal contrast enhancement. Taking alkyl-PEI2k/
SPIO nanocomposite as an example, at the magnetic field of
1.5 T, T2 relaxivity of multiple SPIO nanocrystals micelles
around 79 nm is 323 FemM−1 s−1, which is much higher than
that of single SPIO nanocrystal containing micelles with a
diameter about 12 nm (118 Fe mM−1 s−1) (71).

Not only for entrapment of hydrophobic imaging compo-
nents, polymer micelles can also be used for conjugation of
chelating moieties and providing high-affinity binding of a
wide range of non-radioactive or radioactive heavymetal ions,
such as 111In, 99mTc, 68Gd, 67Ga, etc., for either T1 MR, PET
or SPECT imaging. Hoang et al.monitored the pharmacoki-
netics of elimination from the blood and biodistribution of an
111Indium-labeled (111In) amphiphilic diblock copolymer mi-
celle using microSPECT/CT imaging (72). The accumula-
tion of 111In-micelles in spleen, liver, and tumor at 48 h p.i. in
athymic mice bearing MDA-MB-231 breast cancer
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xenografts are shown in Fig. 4a and b. 111In-micelles have
longer circulation time up to 48 h p.i. and exhibited signifi-
cantly great tumor accumulation (9±2% i.d./g). As shown in
Fig. 4c, 111In-micelles exhibited incomplete and nonhomoge-
neous distribution within the tumor nodule, with the majority
located at the periphery on the transverse slices.

Quantum dots (QD) and hydrophobic fluorescent dyes are
widely used as fluorescent probes for in vitro and in vivo imaging
applications (73–75), but their poor biocompatibility limits
their applications. Block copolymer micelles temporarily ad-
dressed this problem by wrapping hydrophobic nanocrystals
and small molecules inside of them (76). The soluble fluores-
cent dye can be conjugated to the hydrophilic segment of
micelles by chemical conjugation (77). Recently, we have
synthesized amphiphilic polyethylenimine (PEI) 25 kD modi-
fied with near-infrared (NIR) fluorescent dye Cy5.5, and they
were used for encapsulation of multiple hydrophobic SPIO
nanoparticles to form a multimodality probe for cell labeling
(78).

Multifunctional polymeric micelles with targeting capabil-
ity for anticancer drug delivery and imaging of distribution
have been developed, with focus on design of well controlled
nanostructures. Nasongkla et al. constructed combinatorial
polymeric micelles encapsulated therapeutic drugs doxorubi-
cin for treatment of cancer, and co-loaded SPIO nanoparti-
cles for synchronous cancer imaging and traceable drug de-
livery, as well as cRGD ligands were coupled onto micelle
surface for targeting integrin αvβ3 of tumor endothelial cells
(79). The integrated micelle conjugates showed increased
uptake in vitro αvβ3-overexpressing endothelial cells. In a fur-
ther study, they provided noninvasive imaging of tumor an-
giogenesis in human lung cancer subcutaneous tumor xeno-
grafts with αvβ3-specific nanoprobe consisting of fluorescent
superparamagnetic polymeric micelles (FSPPM) (80). MRI
data showed αvβ3-specific FSPPM accumulation at tumor site
in vivo, allowing for an accurate and quantitative characteriza-
tion of tumor angiogenesis.

The great advantage of polymeric micelles is that they can
encapsulate relatively higher amount of hydrophobic drugs
and imaging agents but remain its high water solubility as a
carrier comparing to other alternatives such as soluble poly-
mers and liposomes. Along with the successful application in
therapeutics in preclinical and clinical studies, polymeric mi-
celles are also accepted as multifunctional delivery systems
that may maximize the therapeutic efficacy and reach goals
in personalized medicine.

Liposomes

Liposomes are the most clinically established nanoplatform
systems for incorporation of targeting, imaging, drug and gene
delivery entities (81). Various liposomes are approved by the
FDA to carry a range of chemotherapeutics for different

therapeutic indications. Two well known formulations are
Caelyx/Doxil and Myocet, which are PEGylated liposomal
doxorubicin products that attenuate drug-related toxicity, but
keep the formulation having similar therapeutic effects as free
ones. This is exemplified by the results from clinical trials, in
which it was demonstrated that cardiotoxicity can be signifi-
cantly reduced, but its response rates and time to progression
were substantially comparable to conventional doxorubicin in
treatment of metastatic breast carcinoma (82,83). One signif-
icant obstacle of liposome systems is that the encapsulated
drug within a liposome is difficultly released at the intended
site. To address this problem, new generations of liposome
systems have been developed to trigger drug release from
liposome cavities at specific sites by change in pH, tempera-
ture or certain actions of enzymes on liposome surface (84,85).
ThermoDox, a liposomal formulation, encapsulated doxoru-
bicin within a temperature-sensitive liposome, is currently in a
Phase II clinical trial for combination use with hyperthermia
treatment in oncology (86).

A wide range of therapeutics can be encapsulated in their
aqueous volume or embedded within the bilayer of liposomes.
One straightforward approach for incorporation of contrast
agents into liposomes is relying on a chelating ligand labeled
with either a MRI contrast agent Gd3+, or a selected radio-
nuclide for PET or SPECT nuclear imaging (87). In a few
reports, novel tumor targeting liposomal complexes incorpo-
rated contrast agents result in multifunctional theranostic
nanoplatforms for the combined detection of early diseases
and monitoring of drug delivery (88–90). For example, Kenny
et al. showed therapeutic siRNA-entrapped liposomes combin-
ing MR with fluorescence microscopy imaging for real-time
monitoring of drug delivery and therapeutic effects in vivo (88).
In addition, magnetic nanoparticle can be encapsulated inside
liposomes as theranostic nanosystems (91). Plank research
group designed folate receptor targeted thermosensitive mag-
netic liposomes entrapped doxorubicin for hyperthermia
treatment of cancer in conjunction with chemotherapy (92).
The multifunctional liposome showed that magnetic hyper-
thermia can trigger doxorubicin release from liposomes with
improved tumor cell killing in comparison to non-magnetic
folate-targeted liposomes and Caelyx®.

From many examples, multifunctional theranostic lipo-
somes have been used for detection or treatment of diseases,
and they will be chosen as promising carriers for further
enhancement of therapeutic and diagnostic efficacy.

Dendrimers

Dendrimers are unqiue macromolecules with precise con-
trolled structures. Their size can be finely tuned by adjusting
the number of generations, and therapeutics or imaging moi-
eties can be added with good loading efficiency through
optimal design of conjugation sites. These unique features
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have made dendrimers of increasingly important as
theranostic nanoplatforms. Dendrimers are capable of non-
covalently or covalently binding of chemotherapy drugs, im-
aging agents, and other biologically active targeting moieties
such as monoclonal antibodies, peptides and folate (93–95).
Thomas et al. have demonstrated that a generation 5
polyamidoamine (PAMAM) dendrimer conjugated with both
folic acid (FA) and methotrexate (MTX) has better chemo-
therapeutic efficiency than MTX alone (96). In our previous
report, a series of Gd(III)-based peptide dendrimers with
highly controlled structures can be used as efficient multiva-
lent MRI probes (97,98). In vivo studies have shown that the
mPEGylated Gd(III)-based dendrimer provided much longer
blood circulation time and higher signal intensity enhance-
ment in mouse kidney comparing to other dendrimer
formulations.

The unique structural properties allow dendrimers can be
used to stabilize hydrophobic nanoparticles through the
ligand-exchange reaction method. This strategy had been
applied to directly exchange the original organic ligands from
SPIO nanoparticles with hydrophilic ligands based on various
functional groups as the anchoring groups (99–101). Chang
et al. has developed a novel multifunctional PAMAM
dendrimer-based carrier conjugated to SPIO nanoparticles

for imaging and doxorubicin through a pH-sensitive
hydrazone linker for therapy, which showed good biocompat-
ibility, biodistribution, and satisfactory cancer imaging results
(102). And the stimuli-responsive dendrimers have shown
better control of drug release at the disease site, but remain
relatively stable in the systemic circulation. In another exam-
ple, dendrimers are used to entrap Au nanoparticles ormodify
the surface of Au nanoparticles for CT imaging application
(103). Multimodality dendrimers can be achieved by designed
surface modification to form MR, CT or PET/SPECT im-
aging agents (104).

Dendrimers can be chosen as carriers of chemotherapy
drugs or imaging agent through conjugation, and they can
also be used to form complex with therapeutic DNA/RNA
(105,106). In one example, Yu synthesised PAMAM dendron
modified with hydrophobic alkyl chains for effective delivery
of Hsp27 siRNA in vitro and in vivo in a castration-resistant
prostate cancer model, and produce significant gene silencing
and potent anticancer activity (107).

Although dendrimers have proven to be successful drug
and imaging agent carriers in a number of preclinical studies,
however, dendrimers are more expensive than other nano-
particles and require many repetitive steps for synthesis, pos-
ing a challenge for large-scale production. While cationic

Fig. 4 (a) MicroSPECT/CT
imaging of athymic mice bearing
MDA-MB-231 breast cancer
xenografts after 48 h iv
administration of 111In-micelles.
The accumulation of 111In-micelles
in the liver, spleen, bladder and
tumor was clearly visualized on the
images. (b) The 111In-micelles
quantification of tissue accumulation
via γ-counting and MicroSPECT/
CTregion-of-interest (ROI) analyses
in MDA-MB-231 tumor-bearing
mice at 48 h p.i. (c) The tumor
radioactivity on the transverse slices
displayed the nonhomogeneous
distribution of 111In-micelles.
Images adapted with permission
from refs (72)
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polymer/DNA complexes showed unexpected characteristics
such as short plasma circulation times, low transfection effi-
ciencies in vivo compared to viral vector, and inherent cytotox-
icity associated with their cationic nature (108).

APPLICATIONS IN CANCER

According to World Health Organization in 2008, cancer
affects tens of millions people in all age groups and both sexes
as a disease (109). Although diagnostic procedures and con-
ventional treatment technologies have made significant strides
in clinical applications, they remain far from optimal. Over
the past decade, there has been a burst of interest in develop-
ment of nanoparticle-based theranostics for imaging of early-
stage cancer and drug delivery simultaneously. A number of
excellent review articles are available on nanoparticle-based
theranostic systems (110–112). Here, we will briefly introduce
some examples to illustrate the feasibility of simultaneous
imaging drug distribution and controlling drug release at a
target site, as well as monitoring of therapeutic efficacy.

Imaging of Pharmacokinetics and Targeted Drug
Delivery

The properties of pharmacokinetics and biodistribution of
drugs determine the efficacy of chemotherapy and radiother-
apy, as well as the safety of the treatment. Theranostics based
on nanoparticles play an increasingly important role in non-
invasive monitoring of key properties of various diseases,
including cancers. And high sensitivity PET or SPECT imag-
ing is a valuable technique that can provide noninvasive
longitudinal visualization of pharmacokinetics and tissue de-
position. For example, Cai, Gong and colleagues recently
designed a multifunctional micelle (H40-DOX-cRGD-64Cu)
made of a hyperbranched amphiphilic block copolymer con-
jugated with targeting ligands and imaging agents for cancer-
targeted drug delivery and non-invasive PET imaging in
tumor-bearing mice, while DOX was covalently conjugated
onto polymer via an acid-labile hydrazone linkage to control
drug release (113). In this report, researchers studied the drug
release in vitro under simulated physiological and cellular con-
ditions confirming that the amount of DOX released from the
H40-DOX-cRGD-64Cu at pH values of 5.3 and 6.6 far
exceed that at pH values of 7.4 after 45 h (92.7%, 85.6 and
12.1% respectively). Further flow cytometry and confocal
laser scanning microscopy analysis revealed that H40-DOX-
cRGD-64Cu substantially increased the cellular uptake
exhibiting a 90% higher level than cells treated with H40-
DOX-64Cu after 2 h incubation. For in vivo experiment, PET
imaging (Fig. 5) displayed that the nanocomposites primarily
accumulated in the liver, tumor, lung, kidney and intestines in
three experimental groups, but H40-DOX-cRGD had higher

U87MG tumor-targeting efficacy and provided faster and
better visualization comparing to H40-DOX-cRGD with a
blocking dose of cRGD peptide and H40-DOX respectively
after intravenous injection. Quantitative data obtained from
ROI analyses further confirmed that the U87MG tumor
uptake of H40-DOX-cRGD was tend to be twice as high as
H40-DOX-64Cu.

Imaging of Drug Release

It’s worth highlighting that it is important to visualize and
analyze drug release under simulated in vitro conditions, how-
ever, a direct evaluation under physiologically relevant in vivo
conditions is a far more important clinical demand in drug
delivery. Several research groups have been working on strat-
egies for noninvasive visualization or quantification of drug
release in vivo over the past few years, and almost all of
analytical methods are indirectly by MRI with gadolinium-
based contrast agents (114–117). MRI can be used to detect
varied signal intensities caused by the changing interaction
between surrounding water molecules and gadolinium-based
contrast agents within versus outside of water-impermeable
nanoparticles, thus to monitor drug release using gadolinium
chelate as a surrogate diffusible tracer (118). Nonetheless, the
studied drug should be similar to a gadolinium agent with
regard to factors such as molecular size, hydrophilicity, and
other physicochemical characteristics (119).

Li and colleagues developed a thermosensitive liposome
(HaT) co-encapsulating Gd-DTPA and DOX which enables
simultaneous real-time monitoring of drug delivery and re-
lease in a locally heated tumor (120). Figure 6a illustrates that
when the formulation was incubated under 37°C in 30 min,
noT1 imaging reduction was observed, while heated at 40 and
42°C for 1–3 min, T1 signal reduced 60% equivalent to the
Triton X-100 treated samples, and representing full release of
Gd-DTPA. From the release kinetics of Gd-DTPA and DOX
measured by MRI and fluorescence respectively (Fig. 6b, c),
we can see DOX was completely released at 40–42°C within
3 min, but negligible drug leakage at 30–37°C over 30 min.
These results indicated that DOX release profile from lipo-
some in vitro was closely related to the release of Gd-DTPA,
corresponding to the change in the MR T1 relaxation time.
Based on the above reasoning, they quantify the release of
DOX before and after heating treatment by the change of
MR T1 signal in mammary carcinoma tumor-bearing mice.
Figure 6d shows that T1-weighted MR signal intensity in the
heated tumor was significantly decreased after treatment, but
few changes in the contralateral unheated tumor.

Imaging of Therapeutic Efficacy

Besides for visualizing drug delivery and release at primary
and metastatic cancer, nanoparticle-based theranostic
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applications have been expanded for imaging of tumor pro-
gression and therapy response. Changes in tumor dimension,
angiogenesis, antigen expression, and expression of specific
molecular markers etc., are important indicators for therapeu-
tic efficacy analysis (121,122).

Nanoparticle-based theranostics offer tangible options to
better evaluate the drug effect and track tumor size over time
using PET or MRI imaging modalities. For example, Kaida
group designed a multifunctional polymeric micellar
nanocarrier incorporating Gd-based contrast agents and plat-
inum (Pt) anticancer drugs through reversible metal chelation
of Pt (Gd-DTPA/DACHPt-loadedmicelles), simultaneous for
imaging and therapy of an orthotopic animal model of intrac-
table human pancreatic tumor (123). In the research, they
assessed the antitumor activity of Gd-DTPA/DACHPt-load-
ed micelles by monitoring the tumor size in real-time using
T1W T1-weighted MR imaging at the day of the drug

administration. MR images indicated that the tumor size of
themice have a significant reduction after 18 days treated with
the micelles at 8 mg/kg on Pt base. In another example,
William et.al used contrast-enhanced MRI scan to reflect
visually the tumor size, and then evaluated the brachytherapy
activity of rhenium-186 (186Re)-liposomes by convection-
enhanced delivery in an orthotopic U87 glioma rat model
(Fig. 7) (124). The images depicted the significant efficacy of
186Re-liposomal brachytherapy that the tumor size decrease
or even disappear with increased therapeutic duration, where-
as, the marked difference in tumor size was observed between
the groups that without treatment for 14 days.

Clinical and experimental studies suggest that angiogenesis
is a prerequisite in the process of solid tumor growth and
metastatic dissemination (125–127). Tumor angiogenesis
could be utilized for treatment of tumor through
antiangiogenic therapy and for assessment of tumor

Fig. 5 Top A schematic illustration
of the multifunctional H40-DOX-
cRGD-64Cu nanocomposites for
tumor-targeted drug delivery and
PET imaging. BottomPET imaging of
U87MG tumor-bearing mice at
various time points post-injection of
H40-DOX-64Cu, H40-DOX-
cRGD-64Cu, or H40-DOX-
cRGD-64Cu with a blocking dose of
cRGD. Images adapted with
permission from refs (113).
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progression by non-invasive imaging (128,129). The αvβ3
integrin receptor plays an important role in pathologic angio-
genesis associated with tumor progression and metastasis.
Targeting this receptor may assess integrin expression level
and improve drug delivery efficiency.

Chen and Lu developed a MRI probe by decoration of
RGD peptides on iron oxide nanoparticles with a crosslinked
PEGylated amphiphilic triblock polymer (IONP-RGD), for
noninvasive monitoring of the antiangiogenic therapy re-
sponse of a vascular disrupting agent VEGF121/rGel in an

Fig. 6 (a) T1 image of HaT in vitro
after incubation at different
temperatures. Triton X-100 was
used to completely release Gd-
DTPA and DOX. Rainbow bar =
T1 value (ms). (b) The release
kinetics of Gd-DTPA from HaTafter
incubation at different
temperatures. (c) The release
kinetics of DOX from HaTafter
incubation at different
temperatures. Data are mean ±
S.D (n=3). (d) T1 images of the
tumor xenografts before and after
treated with HaT (10 mg DOX/kg)
in combination with local
hyperthermia to one tumor. Images
adapted with permission from refs
(120).

Fig. 7 In vivo antitumor activity of
186Re-liposomal on orthotopic U87
glioma model assessed by contrast-
enhanced MRI. Images adapted
with permission from refs (124)
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orthotopic U87MG glioblastoma model (130). For treatment
evaluation, two doses of 12 mg/kg VEGF121/rGel were
intraperitoneally administered. After 4 days treatment, the
signal of IONP-RGD after 6 h post-injection in tumor areas
was obviously decreased in the treated group comparing to
pre-injection signals (Fig. 8a). Dynamic T2*-weighted imaging
at various time points from 0 to 70 min were displayed in
Fig. 8b. A fast and obvious signal enhancement of IONP-
RGDwas observed in tumor areas of the untreated group, but
a small signal intensity decrease was detected in the treated
group. These results demonstrated the VEGF121/rGel dam-
aged tumor angiogenic blood vessels and inhibited integrin
expression. More importantly, using IONP-RGD for nonin-
vasive imaging has higher sensitivity than traditional ap-
proaches based on measurement of tumor size, monitoring
of early tumor responses to antiangiogenic therapies.

Not limited for loading of small molecule anticancer drugs,
imaging visible nanoparticles have also demonstrated their
capability of carrying biomacromolecules such as therapeutic
genes. For example, polycation/SPIO nanocomposites were
used as MRI visible carriers for delivery of siRNA both in vitro
and in vivo (131). In that study, multiple hydrophobic SPIO
nanocrystals are self-assembled into cationic nanocomposites
(alkyl-PEI2k-IO) in water phase with a low molecular weight
alkylated polyethyleneimine (alkyl-PEI2k). Alkyl-PEI2k-IOs
can form complexes with luciferase siRNA and induce en-
hanced down regulation of luciferase in fluc-4 T1 cells without
exhibiting cellular toxicity in vitro. Meanwhile, at a 7 T mag-
netic field, the transfected cells displayed strong signal contrast
compared to untreated cells on T2 weighted imaging. During
in vivo studies, the alkyl-PEI2k-IOs/siRNA complexes demon-
strated remarkable gene silencing efficiency on a 4 T1-fluc
tumor xenograft model.

APPLICATION IN CARDIOVASCULAR DISEASE

Cardiovascular disease (CVD) encompasses a class of diseases,
many of which are related to a process called atherosclerosis
and its sequelae, including myocardial infarction and cerebro-
vascular accidents. CVD is the leading cause of mortality,
representing a substantial economic burden (132). The prac-
tice of clinical imaging technology makes remarkable ad-
vances for diagnosis of CVD, but problems need to be solved
including how to accurately distinguish the vulnerability and
the rupture of atherosclerotic plaques, as well as monitor the
effect of innovative therapies of heart failure (133,134). The
availability of multifunctional nanoplatform-based
theranostics represents a potential solution for these problems
(135,136).

Given that the considerable mortality is primarily due to
plaque destabilization, early detection is crucial for preventing
of myocardial infarction and sudden cardiac death. The

initiation of plaque rupture has been linked to fibrin deposi-
tion, plaque neovasculature, as well as abundance of macro-
phages that contribute to the degradation of the fibrous cap by
upregulation of metalloproteinases (137). These characteris-
tics offer a few potential targets allowing for the construction
of functional diagnostic or therapeutic agents, including
nanoplatform-based theranostic agents.

Atherosclerotic plaque development and progression of the
disease is accompanied by neovascularization of the vessel wall
(138). Angiogenesis is associated with plaque hemorrhage, and
intraplaque hemorrhage play a role in atherosclerotic plaque
growth and destabilization (139–141). Therefore, angiogene-
sis is a potential therapeutic target for plaque stabilization.
Lanza et al. studied the potential of paramagnetic nanoparti-
cles that incorporated fumagillin for noninvasive assessment of
αvβ3-integrin expression and quantification of local response
to treatment in a rabbit model of atherosclerosis (142). This
study showed that the αvβ3-targeted paramagnetic nanoparti-
cles with and without fumagillin displayed more increased
MR signal intensity in the aortic wall compared to the
nontargeted nanoparticles (16.7%, 16.7%, and 10.8% respec-
tively) after 4 h post-administration of the nanoparticles. One
week following the antiangiogenic nanoparticle treatment,
α vβ3- targeted paramagnet ic nanopar t ic les were
readministered and T1-weighted MR signal enhancement in
the aortic wall revealed a significant decrease (2.9%), but not
in untreated rabbits (18.1%). Collectively, these data suggest
that αvβ3-targeted paramagnetic nanoparticles delivery of
fumagillin might inhibit the regeneration process of
neovasculature within the aortic wall, and the therapeutic
efficacy can be noninvasively assessed by MRI.

Plaques contain numerous inflammatory cells, in particular
macrophages that can lead to inflammatory atherosclerotic
plaques destabilization and disruption, resulting inmyocardial
infarction and stroke (143). Targeting of macrophages is an
appealing approach to analyze and treat vulnerable plaques
prone to clinical complications (144). Mulder group devel-
oped a multimodal imaging nanomedicinal liposomal formu-
lation of glucocorticoids (L-PLP) to deliver the drug into
atherosclerotic plaques, as well as to monitor delivery and
rapid anti-inflammatory effects in atherosclerotic lesions
(Fig. 9a) (145). Figure 9b showed a marked T1-weighted
MRI signal intensity increase throughout the entire inflamed
vessel wall 2 days after the administration, indication of a
considerable accumulation of liposomes at the atherosclerotic
lesions. 18F-FDG-PET/CT was used to track therapeutic
effects of L-PLP in atherosclerotic rabbits by visualizing and
quantifying plaque macrophage inflammation. Figure 9c re-
vealed a clearly visible signal enhancement throughout the
aorta before treatment with L-PLP, but a significant reduction
of 18F-FDG uptake after 1 week of treatment, demonstrating
the efficacy of L-PLP. Dynamic contrast enhanced MRI
(DCE-MRI) also proved the efficacy of L-PLP (Fig. 9d). The
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Fig. 8 Monitoring of therapeutic
response of VEGF121/rGel in
orthotopic U87MG glioblastoma
model by MRI. (a) T2*-weighted
MR imaging of untreated and
VEGF121/rGel treated groups
before and after 6 h post-injection of
IONP-RGD. (b) T2*-weighted MR
dynamic imaging of untreated and
VEGF121/rGel treated groups
before and after injection of IONP-
RGD. The white circle indicates
location of the implanted tumor (4
mice each group). Images adapted
with permission from refs (130)

Fig. 9 (a) Schematic of the liposomal nanoparticle (L-PLP). (b) MR images of the abdominal aortic wall before and 2 days after the administration of L-PLP in
atherosclerotic rabbits. (c) PET/CT images of the abdominal aortic wall before and 1 week after the administration of liposomal PLP for evaluating therapeutic effects.
(d) DCE-MR overlays images of the abdominal aortic wall before treatment and 2 days post-treatment with L-PLP. Images adapted with permission from refs (145)
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area under the curve (AUC) of the vessel wall showed a more
obvious decrease 2 days post-injection of L-PLP (1784±
449 AU) comparing to pre-injection (2278±406 AU).

Coronary stents have greatly reduced the risk of restenosis
since their clinical introduction. Nevertheless, restenosis still
occurs in a substantial proportion of patients and how to
develop effective theranostic agents remain a great challenge
in pharmaceutical industry (146). It is possible that
nanoparticle-based theranostics can provide a novel approach
to improve clinical outcome (147,148). PFC nanoparticles,
previously considered as artificial blood substitutes (149), have
been developed into a nanoplatform technology for targeting
drug delivery and quantitative detection with the help of MR
imaging and spectroscopy of its fluorine (19F) core (150).
Lanza group designed αvβ3-targeted PFC nanoparticles with
rapamycin for inhibiting restenosis after balloon injury, and
imaging therapeutic effects (151). The study indicated that the
segments at 2 weeks after treatment with αvβ3-targeted
rapamycin nanoparticles had a widely patent contralateral
artery, while the control segments had sensible lumen irregu-
larities. Histological analysis also revealed reduced restenosis
in all injured arteries segments that treated with targeted drug
nanoparticles. These data confirmed αvβ3-targeted rapamycin
nanoparticle can be locally delivered into the stretch-fractured
arteries, and thus reduce stenosis response.

CONCLUSION AND PERSPECTIVE

The field of theranostics remains relatively young, but consid-
erable efforts have been made toward the research and devel-
opment of theranostic nanoparticles for cancer and cardiovas-
cular targeted imaging and therapy. Of various theranostic
nanoplatforms, biodegradable and metabolizable polymer
nanoparticles have been designed and tested in small animal
models. Advantages of these particles include long circulation
life, good biosafety, decoration of targeting moieties, and
loading of therapeutic and contrast agents. These multifunc-
tional polymer nanoparticles can be used for noninvasive
diagnosis of certain diseases with anatomical details. Besides,
one can assess the pharmacokinetics, biodistribution and
targeting efficiency of conjugated or entrapped therapeutic
agents, and therapeutic responses. These functions can facili-
tate the development of novel drugs in both preclinical and
clinical phases.

Nevertheless, the translation of such a system to clinical
success faces many barriers, especially the low drug loading
capacity and drug concentrations in the lesion locations.
Currently, the drug loading in most nanoparticles is usually
around 10%, and usually less than 2% of the total adminis-
tered nanoparticles arrives at the tumor site even if the pe-
riphery of polymer nanoparticles conjugated with targeting
ligands (152). In this respect, the amount of the drug

accumulated to the target lesion locations may be the same
for both targeting and non-targeting formulations. But one
may find solutions for improved drug targeting efficiency by
other mechanisms down the road. Moreover, the costs and
regulatory hurdles associated with adding targeting ligands
and imaging capabilities to nanoparticles are additional con-
sideration for commercial viability. However, it is important
that nanoparticle approach can reduce drug toxicity and
provide an alternative way for intravenous administration
of poorly soluble drugs, and it may offset the costs. In
addition, the clinical demand for simultaneous imaging
and therapeutic capabilities will likely drive the further
investment on theranostic agents. Theranostic nanopar-
ticles may be used in clinic in the near future for
providing extra values on diagnosis and therapeutic
efficacy evaluation of cancer and cardiovascular
patients.
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